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Abstract-The opening of a fracture is dependent on the fluid pressure and the local stress regime around the 
fracture. For a fracture to open, the fluid pressure must exceed the normal stress acting on the fracture. The Mohr 
circle provides a useful tool allowing the visualization of these relationships. This construction determines the range 
of fracture orientations that are able to open, as well as determining the opening direction of these fractures. This is 
then used to produce ratios of the magma pressure and the principal stresses for some dykes from the Lizard 
ophiolite, U.K. 0 1997 Elsevier Science Ltd 

INTRODUCTION 

The upper crust is pervaded by fractures which provide 
planes for the fluids to exploit. Dykes provide examples 
of such fluid flow and have been observed to intrude 
along pre-existing fractures (Currie and Ferguson, 1970; 
Roberts and Sanderson, 197 1; Baer et al., 1994; Jolly and 
Sanderson, 1995). In this Short Note, use is made of the 
Mohr circle, developed by Otto Mohr (1900, 1914), to 

Sh 

examine the stresses and fluid pressures controlling 
fracture opening, following the analytical approach of 
Delaney et al. (1986). Thus, the wide range of stress and 
strain problems (e.g. Ramsay, 1967; Jaeger and Cook, 
1969; Means, 1983; Passchier, 1986; Vissers, 1994) Fig. 1. The notation used for the analysis of fluid dilating a fracture, 

amenable to analysis by the Mohr circle is extended. Compressive stresses are positive. The arrow indicates the opening 
direction of the fracture. 

CONDITION FOR FRACTURE OPENING 
n 

_ &f + sh , &I - sh cos 28 

For fluid to open a pre-existing fracture (Fig. l), the 
2 

I 
2 (2) 

fluid pressure (P,) must exceed the normal stress (a,) Delaney et al. (1986) derive the driving stress ratio (R) 

acting on the fracture walls (Delaney et al., 1986): by substituting equation (2) in equation (1) and rearran- 

Pf > an- (1) 
ging: 

For this condition to be met, the stress on the fracture 
plane must lie in the shaded area of Fig. 2. The normal 

R/-v 

SH - sh 
> cos 28. (3) 

stress acting on a fracture (Fig. 1) can be expressed in 
terms of the fracture orientation (Q, and the maximum This is more clearly expressed in terms of the mean 
(SH) and minimum (Sh) principal stresses: stress (G,) and the maximum shear stress (z,,,): 

Pf - %I 
Rx------- > cos 20. 

rmax 
(4) 

*Present address: Department of Geology, Imperial College of 
Science and Technology, Royal School of Mines, Prince Consort Road, Parameter R has been termed the driving stress ratio 
London SW7 2BP, U.K. (Delaney et al., 1986), and illustrates the role of fluid 
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Fractures unable 

Fig. 2. A Mohr circle construction showing the maximum shear stress (tmax), mmimum principal stress (St,) and maximum 
principal stress (SH). The fluid pressure (Pr) is plotted along the normal stress (a,) axis. Fractures to the left of the fluid pressure 
line, the shaded area, are able to dilate as the normal stress is less than the fluid pressure. Fractures to right of the fluid pressure 
line are unable to dilate. The triangle AOB is used in the derivation of the R ratio (see text for details), and the triangle FOC 

establishes the opening direction (,u) of a fracture (see text for details). 

pressure (Pr), mean stress (cr,) and the maximum shear 
stress (z,,,) in determining conditions of fracture open- 
ing. R can be easily derived from the Mohr circle (Fig. 2), 
by considering the triangle AOB. The length A0 can be 
expressed in two ways: first, in terms of the fluid pressure 
(Pr) and the mean stress (a,) (equation 5); and, second, in 
terms of the maximum shear stress (z,,,,) and the fracture 
orientation (0) (equation 6): 

A0 = Pf - a, (5) 

A0 = tmax cos 28. (6) 

Combining equations (5) and (6) gives 

Pf - a, > tmax cos 28. (7) 

Clearly, from Fig. 2, the following relationships apply: 
when Pf -c Sh, no fractures open (R-c - 1); when 
Sh < P,-< SH, a limited range of fracture orientations are 
able to open (1 > R > - 1); when Pf > SH, fractures of any 
orientation can open (R > 1). 

OPENING DIRECTIONS 

Having established a simple Mohr construction to 
determine the orientations of fractures that are able to 
open, it is now necessary to establish the opening 
directions of these fractures. Delaney et al. (1986) express 
the opening direction (p) in terms of shear stress (z), 
normal stress (a,) and the fluid pressure (P,) (Fig. 1) as 
follows: 

t sin 28 
tan p = ~ = 

Pf - an R-~0~20’ (8) 

This may be determined directly from the Mohr 
circle for any stress which satisfies the conditions for 
opening (such as F in the shaded area in Fig. 2). 
Consider the triangle FOC (Fig. 2), in which the length 
FC= z (shear stress), and the length CO = Pf-a, 
(difference between fluid pressure and normal stress). 
It follows from equation (8) that the angle FOC is the 
opening direction (p). Note that for the limiting 
condition for opening (point B), p = 90”; i.e. opening is 
parallel to the fracture. 

MOHR CIRCLE CONSTRUCTION IN THREE 
DIMENSIONS 

The mechanics of dyke opening in two dimensions can 
easily be extended to three dimensions using the Mohr 
circle construction, the conditions for opening again 
being represented by the shaded area in Fig. 3. 

Baer et al. (1994) have extended the two-dimensional 
approach of Delaney et al. (1986) to three dimensions. 
They introduce two terms to describe the relationship 
between the fluid pressure and the principal stresses, the 
driving pressure ratio (R’) and the stress ratio (Q). The 
stress ratio describes the relative magnitudes of the 
principal compressive stresses (~i?a~?c~s) (Angelier, 
1984; Baer et al., 1994): 

The driving pressure ratio (R’) describes the magni- 
tude of the fluid pressure relative to the maximum 
and minimum principal stresses (Baer et al., 1994) 
(equation 8): 
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Fig. 3. (a) The conventions used for a three-dimensional Mohr circle when the fluid pressure (Pr) is less than the intermediate 
stress (az). This produces a clustered distribution of poles to fracture wall, for fractures that open, about the c3 orientation on 
the stereogram, the shaded area. Also shown are the terms, length a, the maximum shear stresses (rmaxl and q,,,,*) and the 0 
angles (0, and f12), needed to derive the Mohr circle from a stereogram, see text for details. (b) The conventions used for a three- 
dimensional Mohr circle when the fluid pressure (Pr) is greater than the intermediate stress (rr2). This produces a girdle 
distribution about the g1 orientation, the shaded area on the stereogram. Also shown are, lengths a and a’, the maximum shear 
stresses (T,,,~~~ and q,,,,s ) and the 19 angles (0, and 0,) needed to derive the Mohr circle from a stereogram; see text for details. 

R’ = Pf - 03 
-. 
01 --a3 

(10) 

R' differs from the R ratio of Delaney et al. (1986) in 
that it compares Pf with 03 rather than the mean stress 
(a,). For R' < 0, no fractures open; for R’ > 0 fractures 
can open, the range of orientations depending on the 
stress ratio 0 (see Baer et al., 1994 for details). 

The range of fractures that are able to open can be 
more easily determined directly from the Mohr circle by 
using the angles 8,, f3z and 0s in Fig. 3, but it is necessary 
to be careful with the conventions used. If the fluid 
pressure is less than the intermediate stress, then the 
angles 8i and e2 define the cluster of poles to fracture 
walls, measured within the relevant plane; for example 8, 
is measured in the ~2-~3 plane (Fig. 3a). If the fluid 
pressure is greater than (TV then the angles e2 and e3 
determine the girdle distribution of poles to fracture wall 
(Fig. 3b). 

Figure 4 shows the range of orientations of fractures 
that are able to open as the fluid pressure increases from 
03 to 01. At low fluid pressures (Pfclose to g3), these form 

a clustered distribution, normal to the minimum princi- 
pal stress. At higher fluid pressures (Pf close to az) they 
form a girdled distribution, normal to the maximum 
principal stress (al). When the fluid pressure reaches the 
maximum principal stress (a,), all orientations of 
fractures are able to open. 

If the range of 0 angles utilized by dykes or veins can be 
determined, then the analysis can be worked in reverse to 
determine the relative values of the stress and fluid 
pressure, through the parameters R' and the stress ratio 
(Q) (Baer et al., 1994). Using Fig. 3(a), the length 
a = Pf- CJ~ can be defined in terms of both 8, and &: 

a = tmaxi(l + cos 281) (11) 

and 

a = rmax2(l + cos 282). (12) 

Therefore, for Pf < CJ~, the stress ratio (@) can be 
expressed as: 

02 - a3 rmaxl @==--_== 
i + cos 2e2 

Dl - r73 1 + cos 28, . 
(13) 

rmax2 
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b) 

Fig. 4. The evolution of the Mohr circles and stereograms as there is a relative increase of the fluid pressure from (a) P,-= cr3, to 
(b) 03 < Pr< 02, to (c) Pr= 02, to (d) 02 < Pr< (~1, to (e) Pf > 0,. The shaded areas on the stereograms are the predicted area of 

poles to dyke walls. 
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Fig. 5. (a) The sterogram ofpoles to dyke wall of the gabbro dykes from the Lizard ophiolite, Cornwall, U.K. The shaded area 
indicates the orientations of fractures that the fluid is able to dilate. (b) The sterogram of poles to dyke wall of the type 11 dykes 
from the sheeted dyke complex of the Lizard ophiolite. The shaded area indicates the orientations of fractures that the fluid is 
able to dilate. (c) The Mohr circle for the gabbro dykes producing a stress ratio (@) of 0.81 and a driving pressure ratio (R’) of 
0.82, calculated from the gabbro dyke orientation data. (d) The Mohr circle for the type II dykes producing a stress ratio (@) of 

0.76 and a driving pressure ratio (R’) of 0.25. 

By a similar argument, for Pf> CT~, and using the length 
a’ = cl - Pf (Fig. 3b), the stress ratio (0) can be expressed 
in terms of & and I!&: 

and 

I LI = rmaxz(l - cos 282) (14) 

a’ = rmar3(l - cos 28s). (1% 

Therefore, for Pf> 02, the stress ratio (Q) can be 
expressed as: 

a2 - c3 rmaxl Gnax2 Gnax3 @=_=-_--_= l- 
1 - cos 282 

Cl -03 %Xix2 GIlax Gnax2 i - cos 2e3 . 

(16) 

This stress ratio (Q) defines the form of the stress 
ellipsoid (Bott, 1959; Angelier, 1984; Baer et al., 1994). It 
is this ratio, rather than the magnitudes of the principal 
stresses, which is determinable from kinematic data (as in 
most ‘palaeostress’ analysis methods). 

The driving pressure ratio (R’), can be obtained by 
substituting (a, - a3) = 2zmaX2 and equation (12) in 
equation (10): 

R, = Pf - 03 _ a (1 + cos 282) 

Cl - 03 %l,x2 2 . (17) 

APPLICATION OF THE MOHR CIRCLE CON- 
STRUCTION 

The Mohr circle construction is now applied to dykes 
from the Lizard ophiolite complex, Cornwall, U.K. Four 
dykes sets have been identified at various depths and 
stages in the development of the ophiolite (Roberts et al., 
1993; Jolly, 1996), on the basis of geochemistry, orienta- 
tion and the timing of intrusion of the dykes relative to 
the extensional faulting. In this application of the Mohr 
circle construction we will concentrate on the gabbro 
dykes and the type II dykes, as defined by Roberts et al. 
(1993). The orientations of the dykes were recorded 
where they intersected traverse lines, these being oriented 
orthogonally and at oblique angles to each other to fully 
sample all orientations of dykes. 

The gabbro dykes intrude the tectonized peridotite 
close to the petrological Moho, at Coverack (see fig. 1 of 
Roberts et al., 1993). They are planar in form, have a 
wide range of orientations (Fig. 5a) and often intersect 
each other. There appears to be a lack of sub-horizontal 
dykes, which is not attributable to any sampling bias. 
This implies that the maximum principal stress was 
vertical, with the poles to the dykes forming a girdle 
distribution normal to this vector (see Fig. 4). 
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The type II dykes form the bulk of the sheeted dyke 
complex with the Lizard ophiolite. They are plagioclase- 
phyric dolerites and have a more evolved geochemistry 
than the gabbro dykes (Roberts et al., 1993), and can be 
found predominantly between Porthoustock and Mana- 
cle point (Roberts et al., 1993, fig. 1). The dykes have a 
high degree of alignment (Fig. 5b), the poles to the dyke 
walls clustering sub-horizontally NE-SW, indicating 
steeply dipping dykes trending NW-SE. 

From Fig. 4, the principal stress axes can be located 
from the symmetry of the poles to dykes. To determine 
the symmetry axes, Bingham statistics (see Mardia, 1972) 
were applied to the gabbro and type II dykes, and from 
the resulting eigenvectors the angles of 0 were estab- 
lished. In the case of the gabbro dykes, the magma 
pressure clearly exceeds the intermediate principal stress, 
as the poles to the dyke walls form a girdle distribution 
(Fig. 5a). The stress and driving pressure ratios are 
therefore calculated, using 02 and 03. The poles of the 
type II dykes form a clustered distribution (Fig. 5b), 
implying that the magma pressure is less than the 
intermediate stress. The stress and driving pressure 
ratios were calculated using 19, and &. Substitution of 
these estimates of 8 angles into equations (13), (16) and 
(17) returns a stress ratio of 0.81 and a driving pressure 
ratio of 0.82 for the gabbro dykes, and 0.76 and 0.25, 
respectively, for the type II dykes. 

CONCLUSIONS 

This Mohr circle construction provides a useful tool 
for the analysis of dykes and veins in allowing the relative 
fluid pressure and principal stress magnitudes to be 
estimated graphically. The two-dimensional method is 
easily extended to three dimensions using the Mohr 
circle. Worked examples using dykes from the Lizard 
ophiolite illustrate the power and simplicity of this 

approach. 
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